White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

5 NG
P /L\;\\\ |(?b;;\\(

Y r(/bf\\“
[\\\] E

U\
. = [/l/,,/ \\\\\

P

\\\\\\\\\\
N

AN
\\\\///
i vt

” 0
~ o> o o o o ~ NG \ = _/ ks
\\ // P r\\\ %gggggn\
N %\ \OUOO w&_
e N o\\\

WhitePaper

The Next loT Cycle
WebAssembly at the Bottom of the Stack

Standardizing Portable Secure Execution for Real-World loT Using WebAssembly

October 2025 “’
Author: Aaron Ardiri, CEO - RloT Secure AB : IOT

SECURE

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

Abstract

WebAssembly (WASM) and the WebAssembly System Interface (WASI) are emerging as
the first credible candidates for a universal execution layer that spans browser, cloud,
edge, and embedded environments. In loT, where devices operate under extreme
resource constraints and long deployment lifetimes, this shift is strategically significant.

This white paper documents RIoT Secure's approach to bringing WebAssembly to micro-
controller class devices, including the development of a fully-compliant lightweight
runtime, a proposed universal device I/0 ABI for hardware access, and the planned
integration of WebAssembly execution as a first-class deployable unit inside an already
commercial lifecycle management platform used in production for over five years. We
present measured results demonstrating feasibility on constrained hardware, outline the
implications for portability, security, lifecycle economics, and industry standardization,
and argue that the decisive window to align on an open execution standard for loT is now.

Executive Summary

loT is entering a phase where long-lived devices must run securely isolated and verifiable
logic securely at the edge - yet the industry still relies on firmware models designed for
static, single-vendor deployments. At the same time, WebAssembly (WASM) and the
WebAssembly System Interface (WASI) have emerged as credible candidates for a
universal execution layer. What WebAssembly did for the browser - portability,
sandboxing, and determinism - needs to happen at the device level for loT.

RloT Secure has been preparing for this transition long before the ecosystem caught
up. For over five years our lifecycle management platform has been commercially
deployed in production, delivering and maintaining secure MCU-based firmware at scale
for a high-profile customer. The work described in this white paper extends into the
WebAssembly domain: we have built and validated a lightweight, standards-compliant
WebAssembly runtime for micro-controllers, investigated the practical constraints of
toolchains and binary size, and published a proposal for a universal device 1/0 ABI - the
missing layer that enables truly portable WASM workloads on real hardware.

This is not a conceptual or academic exercise - RloT Secure is executing at the critical
inflection point: before the ecosystem hardens around incompatible vendor-specific
runtimes. By aligning early with WebAssembly and publishing a concrete device I/O
proposal, we aim to help shape the standard before fragmentation becomes irreversible,
while positioning RIoT Secure to lead and commercialize the resulting gap in the market.

WebAssembly is moving from browsers into edge and loT, and because standardization is
not yet fixed, this is a rare shaping window. RloT Secure enters that window with a fully-
compliant, micro-controller sized WASM runtime already built and proven on
constrained hardware - not theorized - and with an existing lifecycle platform already in
commercial use for over five years, making WebAssembly an extension of a deployed
product rather than a new experiment. The single largest gap in the market is the absence
of a universal hardware 1/0 ABI for WebAssembly, which is forcing every vendor to build
their own and guaranteeing fragmentation.

Page 2 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

Problem Space - Why This Matters Now

The loT industry has reached a structural constraint: devices are expected to live 10-20
years in the field, yet most still ship firmware the way we did in 2005 - vendor-locked,
monolithic, and non-portable. Every hardware vendor exposes its own SDK, its own
abstractions, its own update tooling, and its own security posture. When hardware
changes, the software must be rewritten. When vulnerabilities appear, updates are slow,
vendor-dependent, and costly. When third-party logic needs to run at the edge, it is
welded into firmware rather than executed in an isolated environment.

This fragmentation is not just inconvenient - it is a strategic barrier to scale:

* No portability means no viable ecosystem
every driver and workload is rewritten per vendor.

* No isolation means no real-world safety
a single bug becomes a full compromise.

* No standard interface means no supply-chain leverage
hardware cannot be swapped.

No abstraction means no delegation
third parties cannot ship code safely and focus on native targets.

Meanwhile, expectations on devices are rising - not shrinking. Edge devices are
expected to run AI/ML workloads, support secure OTA update, pass compliance,
interoperate across vendors, and remain maintainable without physical access. The “flash
once and forget” model is no longer viable.

The industry now requires an execution model that is:

+ Portable across vendors and silicon generations

+ Sandboxed and capability-constrained

« Small enough for micro-controllers, not just Linux edge
« Updatable over the air without firmware rebuilds

« Auditable and reviewable independent of vendor SDKs

WebAssembly and WASI promise this - but only if implemented in a form that works
under real loT constraints, not just in cloud and browser environments.

* Runtimes do not meet memory and determinism constraints of real micro-controllers.
+ No standard I/O ABI exists to let WASM touch actual hardware without vendor lock-in.

RloT Secure’s work begins where the current state seems to have stagnated: the industry

has agreed on the right execution model in principle, but no one has carried it across the
finish line to embedded reality, hardware 1/O, and fleet-scale lifecycle integration.

Page 3 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

WebAssembly & WASI - Promise vs
Current Reality

WebAssembly (WASM) was not created for loT - it was created to bring safe, high-
performance execution to the browser. What made it work there is exactly what loT
needs now: a compact, deterministic, sandboxed execution format with no implicit
system access and strong isolation guarantees. As tooling matured, WebAssembly left
the browser and became viable on servers, edge gateways, and even secure
environments. That same transition is now approaching the embedded world.

The industry expectation around WebAssembly in IoT is clear:

* Write in any language — compile to WASM binaries
+ Deploy to any device — without vendor-specific firmware
Run in a sandbox — with only explicit permissions
+ Update the workload independently — without reflashing base firmware

In parallel the WebAssembly System Interface (WASI) was introduced to extend WASM
beyond the browser by defining system-level APIs such as files, clocks, sockets, and
randomness. In cloud and server environments, it's hinting as an alternative to containers.

However the current reality does not yet match the promise for |oT:

WASI is still unfinished and fragmented
Three incompatible previews exist in parallel (P1, P2, P3), each with different design
goals and adoption footprints.

+ Toolchains target servers, not micro-controllers
The ecosystem assumes megabytes of RAM and large runtimes; virtually nothing is
designed for 64KB-class devices.

No standard exists for hardware 1/0
WASI defines files and sockets - but not GPIO, 12C, SPI, UART, or device-level
interfaces. Every vendor invents their own.

+ If nothing is published now, fragmentation will harden by default
The industry is at the pre-POSIX moment - alignment must happen before platforms
diverge permanently.

WebAssembly is on the right trajectory, but it is not yet deployable as a universal
execution layer for loT without additional engineering. The gap is not theoretical - it is
precisely the gap RloT Secure chose to work on:

* A WebAssembly runtime engineered specifically for MCU constraints

A portable 1/0 ABI proposal that avoids vendor lock-in at the hardware boundary
* Integration of WASM delivery into an already-commercial lifecycle platform

Page 4 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

This is the gap RloT Secure focused on closing and this white paper captures that work
and its strategic timing: moving before the standard is decided, not after.

From BRAWL to WASM - Strategic Shift

When RIoT Secure began designing portable execution for loT back in 2017,
WebAssembly was still a browser experiment - there was no WASI, no embedded
runtimes, and no ecosystem capable of supporting edge deployment. Under those
conditions, building our own byte-code (BRAWL) was the only viable path to achieve
portability, determinism and sandboxing on constrained devices. For several years,
BRAWL served exactly that purpose: it proved that firmware could be decomposed into
a portable, sandboxed, updatable execution format independent of vendor SDKs.

But the environment has changed. WebAssembly has matured from a browser artifact
into a general-purpose execution standard. WASI evolved enough to validate the
direction, even if not yet unified. And standardization momentum now matters more than
owning a proprietary virtual machine.

WASM matured from a browser artifact to a universal runtime target.
Compiler support, tooling, and community adoption reached a tipping point - not
just from web developers but from systems vendors and cloud platforms.

+ WASI evolved enough to validate the direction, even if not yet unified.
The trajectory showed that the industry was aligning on the same model BRAWL
was built around - portability through sandboxed interfaces instead of vendor-
specific firmware.

« Standardization momentum now matters more than absolute control.
The long-term value is in interoperability and ecosystem reuse, not in owning a
bespoke VM forever.

Instead of defending a proprietary instruction set, RloT Secure made the deliberate
decision to transition BRAWL to a web-standard execution foundation - inheriting the
WebAssembly core while preserving the original mission: micro-controller-first
portability with deterministic execution and strict sandboxing.

The transition did not reset our work - it accelerated it:

Everything BRAWL enabled (portability, isolation, MCU suitability) is preserved.

* Now built on a standardized execution core instead of a proprietary one.
Developers gain access to existing toolchains and tooling - instantly expanding
who can develop for our platform.

We are not abandoning control or discarding what we built - we are aligning it with the
standard the industry is already moving toward. By shifting from a proprietary VM to
WebAssembly, we preserve our architecture, our learnings, and our advantages, while
ensuring they operate within the same execution model the ecosystem will eventually
converge on. This allows our work to scale with the market rather than stand outside it,
increasing both its adoption potential and its strategic value.

Page 5 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

Engineering WebAssembly for micro-
controllers

Running WebAssembly on a browser or Linux server is straightforward - the environment
provides ample memory, system calls, filesystems and schedulers and mature host
runtimes. None of that exists on a bare-metal micro-controller. A viable MCU-class
WebAssembly runtime must meet constraints that typical WASM engines never
consider: kilobytes of RAM, static memory layouts, no operating system, no dynamic
loader, no allocator assumptions, and deterministic timing.

When we set out to implement our runtime, we made three engineering commitments:

Full compliance with the WebAssembly MVP (1.0), not a subset

Many runtimes “optimize” for embedded devices by removing instruction classes,
skipping validation, or introducing custom opcodes. That creates fragmentation
immediately. We went the opposite direction: implement the full WebAssembly
MVP specification exactly, then optimize under those rules.

Absolute control of memory - nothing implicit, nothing hidden
The runtime must not assume the availability of:

« unlimited memory (heap and stack)
+ afile system

+ threads or timers

« OS services of any kind

All memory usage inside the runtime is explicit and predictable. The runtime and
the module cannot allocate beyond declared limits - a hard requirement for safety-
critical and resource-isolated environments.

Determinism over convenience

loT devices often operate where non-determinism is a security liability, not a feature.
We rejected JIT compilation, background threads, host callbacks, or async
suspension. Every instruction path is inspectable, bounded, and reproducible -
essential for both certification and remote certification.

Implementation Result (BRAWL WebAssembly Runtime)

+ ~12,000 lines of C - fully readable, test-driven, and hardware-portable

+ ~46 KB flash overhead - small enough for low-end micro-controllers

+ ~14 KB RAM - configurable, bounded, and stable

* 100% compliance with MVP against ~12,000 official WebAssembly test vectors

This is not a conceptual or partial port - it is a fully conformant execution engine built
specifically for the class of devices the industry actually ships, by an embedded team
with more than 30 years of experience with resource-constrained environments, ensuring
the implementation reflects real-world constraints rather than academic assumptions.

Page 6 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

Demonstrated Feasibility - Proven on Real Hardware with
Measurable Results

We validated this on both an Arduino UNO R4 WiFi with a Cortex-M4F MCU (32 KB
RAM / 256 KB flash) and an ESP32-S3 WROOM board (520 KB RAM / 16 MB flash),
running standard WebAssembly modules and interacting with hardware only via imports -
proving WebAssembly is viable on micro-controllers today, not just “embedded Linux”.

For investors, acquirers, and strategic partners, the question is not whether
WebAssembly could work on micro-controllers - but whether it already has been proven
under real constraints. We have crossed that threshold.

The Binary Size Reality - High-Level
Languages compiled to WebAssembly

The promise of WebAssembly is often summarized as: “write in any language, compile
to WebAssembly, run anywhere.” That statement is directionally true - but in IoT, it is not
universally true. On micro-controllers, the constraint is not the instruction set - it is the
binary size and runtime baggage that each toolchain brings with it.

To validate feasibility, we prepared and compiled two trivial programs in high-level
programming languages, that every developers knows - (“Hello World” and Fibonacci)
across multiple toolchains into WebAssembly (WASM). The results are unambiguous:

Language / Toolchain Typical WASM Size

C (Emscripten) 1-11 KB

C (WASI SDK) 20-100 KB
TinyGo 21-110 KB
Rust (wasip1/wasip?2) 50-93 KB
JavaScript (Javy) 1 MB

Go (standard toolchain) 2-3 MB
Python (py2wasm) 25 MB

The conclusion is not that some languages simply “don’t work” and not feasible - it is that
their runtime assumptions make them unsuitable for micro-controller-class devices as-is.

Why the sizes explode

Across high-level languages, the bulk does not come from the application and business
logic - it comes from:

+ Bundled runtimes (garbage collectors, schedulers, allocators, interpreters)
« Standard library payloads pulled in even when unused

+ Abstraction layers for WASI and host integration

« Compiler safety nets such as panic handlers and debug metadata

Page 7 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

In cloud and server environments, this overhead is trivial. In 10T, it determines feasibility.

What actually works for embedded WebAssembly

For devices in the kilobyte-to-megabyte class, only three approaches consistently
produce viable binaries:

+ Handwritten WAT
smallest possible artifact, but not practical for most projects

« C/Rust/ TinyGo
with aggressive linker flags - realistic and maintainable

Custom-host-provided functionality
via imports instead of bundling libraries - offload complexity to host

This directly influences the future WebAssembly ecosystem for IoT: the languages that
survive are those that can minimize or externalize their runtime burden.

Strategic implication

This is where RIoT Secure’s runtime and device I/O ABI work matters: by defining stable,
minimal host imports for device I/O, higher-level languages can remain lean - without
embedding full hardware access logic inside the module itself. Instead of every toolchain
carrying drivers and hardware logic, the runtime supplies it once, portably.

Binary size is not an academic detail - it is the gatekeeper for adoption on real devices.

The Missing Layer - Why a Universal
Device 1/0 ABI Is Required

Even if WASM runtimes become small enough for micro-controllers, portability still fails
without a standard way for modules to access real hardware. Today, there is no
consensus - every WASM-on-device solution implements its own private API surface for
GPIO, SPI, 12C, UART, displays, sensors, etc. The result is deterministic fragmentation:

« A sensor driver written for Runtime A does not run on Runtime B

« The same WASM module cannot run across two boards without recompilation
+ OTA deployments still require per-hardware variants

+ Ecosystem reuse becomes impossible before it even gets established

Without a standard device ABI, WebAssembly in loT would reproduce the exact failure
pattern that UNIX faced pre-POSIX: many runtimes, zero portability. The same dynamic
later re-appeared with Java and .NET, where “write once” portability collapsed into
parallel, incompatible ecosystems that forced vendors to maintain separate code
paths for each runtime.

Page 8 of 18

White Paper: The Next loT Cycle - WebAssembly at the Bottom of the Stack
Our Perspective When Designing a Proposed ABI

We did not design an idealized or “future-WASI” system. We constrained the problem
deliberately: the question we solved was minimalist by intent:

“What is the smallest stable ABI that allows WASM to talk to real device 1/O -
without requiring threads, async, post-MVP features or OS services?”

The ABI therefore obeys strict constraints:

No traps, no exceptions, no host callbacks
all operations return numeric codes

« All data passed through linear memory
the only universal primitive WebAssembly guarantees

« Symmetric semantics
same ABI works if the bus is hardware or emulated in software

* No dependency on Preview 2/3, WIT or language tooling
ABI works under WebAssembly MVP (1.0), regardless of target environment

+ Language-agnostic and vendor-neutral
one C header, one WAT import block, one Rust FFlI

Five Device Domains Covered First

Rather than attempt a full catalog, we standardized the primitives that underpin almost all
embedded deployments at a hardware level:

+ GPIO - the foundation of all device control

+ 12C - the dominant bus for sensors and configuration peripherals
+ 1-Wire - widely used in instrumentation and identity chips

+ SPI - the backbone for high-throughput peripherals and flash

+ UART - the universal debug/bridge/protocol escape hatch

If these are not portable, nothing layered above them (sensors, actuators) can be.

Why This Matters Now - Not Later

Standardization does not happen once products ship - it happens before they harden
around incompatible defaults. If the industry simply waits for WASI to eventually include
device |/O after vendors embed proprietary ABls in shipped devices, the window for
portability closes for a decade - a process that is already eight years deep.

This white paper therefore publishes the ABI not as “the one true standard” - but as a
concrete starting position before fragmentation becomes irreversible.

Page 9 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

Demonstrated Feasibility - Zero-Bloat
Demos & Cross-Hardware Execution

A portability standard is only credible if it is implemented and proven on real hardware
- not merely defined on paper. To validate the practicality of a WebAssembly based
execution layer on micro-controllers, we built and executed a series of zero-bloat
demonstrations using the same logic expressed in multiple forms: handwritten
WebAssembly Text (WAT), C, Rust, and TinyGo compiled to WASM.

These demos were not simulations; they ran on physical boards and interacted with

actual device hardware using only host-provided imports - not vendor SDK code inside
the module.

The Proof Case: LED Matrix “Bouncing Balls” Demo

We selected a visual demo intentionally - to eliminate ambiguity and speculation. The
same WebAssembly module was executed on:

* Arduino UNO R4 WiFi
+ ESP32-S3 WROOM with larger LED matrix attached

Target MCU RAM Flash Result
Arduino UNO R4 WiFi Cortex-M4F @48 MHz 32 KB 256 KB worked
ESP32-S3 WROOM Xtensa dual-core @240 Mhz 520 KB 16 MB worked

In both cases:

* The module was unchanged - no vendor-specific rebuilds
* The runtime resolved imports to the correct hardware interface
+ The behavior and timing were identical across boards

This confirms the core claim: portability is not hypothetical - it is achievable today. No

rebuild, no modification, no board-specific divergence. The difference in hardware was
absorbed entirely by the runtime and device 1/0 ABI - not by the application module.

Memory Footprint - Fits Real loT Budgets

Component Flash RAM
Runtime (full MVP) ~46 KB ~14 KB
Application module 1-50 KB inside same linear page
Total <70 KB fits within 256 KB MCU

Page 10 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

This fits inside the class of devices deployed in real loT fleets today.

Zero-Bloat Builds from Modern Languages
Using the same logic and the same ABI imports:

+ C and Rust builds reproduced behavior with minimal overhead

+ TinyGo builds remained in viable size ranges for micro-controllers

+ No embedded runtime logic for displays or timing was bundled - all via host ABI
+ WAT baseline served as the canonical reference for correctness and footprint

The goal was not to write a demo - the goal was to prove that:
+ Modern languages can target WASM without pulling MBs of runtime baggage

+ Portable logic can ship as WASM while hardware access stays in the host
MCU-class deployment is possible without modifying the module per device

Why this matters beyond the demo
Even though the demo is simple, what it proves is foundational:

If an animation can run identically on two boards, so can a sensor driver
+ If imports abstract LEDs, they can abstract radios, storage, and modems
+ If WASM modules run today on an Arduino, they can run anywhere lighter or bigger

We have not just described portability - we have demonstrated it under constraint.

Strategic Implication

Because the technology has already been proven on physical hardware, the remaining
work is execution - commercial, not technical. The next phase is about scaling:
integrating WebAssembly modules as a first-class payload into the existing lifecycle
platform and operationalizing delivery at fleet scale. The risk is already removed on the
technical side - the hard parts are solved - which means the remaining effort is
productization and go-to-market, not invention.

+ Scaling
Integrating the WASM module payloads into the lifecycle platform

+ De-risked technology:
Hard parts are solved - remaining work is productization

* First-mover timing:
Standard not yet locked - window still open to make a massive influence

+ Acquisition leverage:
Whoever owns runtime and delivery owns the device execution layer

Page 11 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

The timing advantage is significant: the standard is not yet locked, which means there is
still a window to shape the space and become the reference implementation instead of
adapting to someone else’s. This is not early-stage research - it is a validated execution
model positioned to be commercialized ahead of industry consolidation.

Bottom Line

This is not a hypothesis or a conceptual design - it is a real implementation that has
already been built, executed on physical micro-controllers, validated against
compliance suites, and measured under realistic constraints. The work is technically
de-risked: the runtime exists, the feasibility has been demonstrated on production-class
hardware, and the supporting ABI is defined. What remains is not proving that it
works, but bringing it to market at the right moment - before the industry settles on a
de-facto standard and before vendor-specific solutions harden into place. In other
words, this is a timing advantage, not a technical gamble, and it is positioned to be
commercialized ahead of consolidation.

Integration Path: WebAssembly a First-
Class Deployment Format in an Already-
Commercial Platform

RloT Secure is entering the WebAssembly era from a position of proven execution, not
early experimentation. Unlike cloud-first platforms that assume Linux resources, our
system was built for devices with limited RAM, intermittent connectivity, and long
service lifetimes.

Today: A Sandboxed Architecture via Separation of Concerns

Our current design already enforces isolation at the hardware level: a dedicated micro-
controller is allocated strictly for security, communications, and policy enforcement,
independent from the application MCU. This separation acts as a hardware-enforced
sandbox, preventing uncontrolled execution on the application side and ensuring secure
lifecycle management. This provided a hardware sandbox even before WebAssembly.

This means RloT Secure already provides:

Isolated execution domain for controlled workloads
+ Secure OTA firmware delivery & rollback
Cryptographic integrity & identity
+ Fleet-wide state & policy management

WebAssembly does not introduce sandboxing from scratch - it introduces a standardized,
portable, language-agnostic sandbox format on top of an already-enforced architecture.

Page 12 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack
Tomorrow: WebAssembly as a Parallel Execution Channel

We are not replacing native firmware support - we are extending the existing pipeline so
WASM modules can be delivered in parallel using the same lifecycle controls:

Capability Native Firmware WASM Modules
Delivery channel Already commercial Added in parallel
Isolation model Hardware-based MCU split Software sandbox in-app MCU
Portability x Recompiled per hardware Single binary, multiple boards
3rd party logic Risky to embed into firmware Safe, revocable, runtime-bound
OTA granularity Full firmware image Fine-grained module swaps

This is an additive evolution, not a migration gamble.

Why This Matters Commercially and Strategically
Because the lifecycle infrastructure already exists:

+ Technical risk is low - infrastructure is proven
+ Time to adoption is short - adding format, not rebuilding platform
+ Acquisition relevance is high - WebAssembly drops into a mature system

We are not selling a runtime - we are commercializing an execution layer inside an
already deployed lifecycle product. The transition from native, vendor-tied firmware to
portable, sandboxed byte-code is not just a technical change - it alters who controls
the loT stack and where value accumulates.

Strategic Implications for the Industry:
Why This Changes Control, Economics,
and Ecosystem Power

The shift from native, vendor-specific firmware to portable, sandboxed byte-code is not
just a technical improvement - it changes the economic and strategic structure of loT.
Whoever controls the execution layer controls the ecosystem above it: the developer
tooling, the security model, the update channel, and ultimately the business models built
on top.

WebAssembly introduces a new equilibrium point in loT similar to what POSIX did for
UNIX and what the JVM did for enterprise software - but this time at the device layer.

Page 13 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

Vendor Lock-In Collapses

Today, hardware vendors control ecosystems by controlling firmware APIls and
toolchains. If WebAssembly becomes the unified execution format:

* Code becomes portable across vendors
Hardware becomes swappable without rewrite
+ Integrators can choose based on cost, supply, or regulation - not SDK compatibility

This shifts leverage from chip vendors to execution-platform owners.

Over-The-Air Updates Stop Being Firmware Events

Today, updating functionality means reflashing firmware - a high-risk, high-cost, slow
process. With WebAssembly:

* Updates can target individual modules, not full firmware images
Risk, downtime, and certification impact are all reduced
* Regulatory re-certification burden drops from firmware to isolated logic units

This changes the economics of maintaining fleets over 10-20 year lifetimes.

Security Review and Compliance Move Upstream

With native firmware, security review is opaque: every vendor implements its own stack.
WebAssembly shifts this dynamic:

* Asingle portable artifact can be audited once and deployed fleet-wide
Capability-based sandboxing constrains attack surface by default
+ Compliance frameworks can validate the module, not the full firmware image

This opens the door to standardized security certification at the workload level.

Third-Party Logic Becomes Economically Viable on Devices

Today, deploying third-party logic to devices is dangerous and expensive - requiring
trust in native firmware injection. WebAssembly changes this:

Third parties can ship code as sandboxed artifacts
+ Code can be versioned, revoked, certified, and isolated
* A marketplace of device workloads becomes possible

This is how ecosystems - not just products - are created.

Timing Matters - Standards Are Not Set Yet

The loT ecosystem is at a pre-standardization inflection point:

Page 14 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

WebAssembly is mature enough to deploy - but not yet fragmented by incumbents
« WASI is advancing - but has not yet defined hardware 1/0
No dominant runtime vendor has captured the embedded layer

This is the rare phase in a platform cycle where technical alignment can create
structural control. This is precisely the window in which technical leadership becomes
structural advantage. Whoever establishes the execution device 1/0O layer before
consolidation becomes the reference point others must follow.

Strategic Summary

WebAssembly on micro-controllers is not merely an efficiency gain - it changes who
controls loT software, how long devices remain economically serviceable, who captures
ecosystem value, and which companies become acquisition targets as consolidation
begins.

RloT Secure is positioned on the correct side of that change - early enough to shape it,
late enough to execute it against reality, not theory.

RloT Secure: Proven Lifecycle Platform
Built for the Class of Devices Everyone
Else Ignores

RloT Secure is not a research group or a cloud-first startup retrofitting ideas
downward into hardware. For more than five years, our lifecycle management platform
has been running in production - on real micro-controllers - delivering secure firmware
updates and enforcing device policy at scale.

Where most loT platforms assume Linux-class resources, we built for the class of devices

that define the real lIoT market: 32-256 KB MCUs, long-lived deployments, intermittent
connectivity, and zero-trust operating environments.

A Platform Already Proven in the Field
The existing RIoT Secure lifecycle stack provides:

+ Secure OTA delivery to low-resource devices

« Cryptographic integrity & certification of updates

* Fleet-wide version management & rollback

+ Device on-boarding, identity, and policy enforcement
+ Operational longevity - built for 10+ year lifecycles

This is not theory - it is already commercially deployed and revenue-validated.

Page 15 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

Engineered for Resource-Constrained Environments - Not
Cloud Convenience

Most platforms assume threads, filesystems, MBs of memory, and a container host. Our
platform was explicitly built for environments where none of those exist:

* Works on bare-metal micro-controllers
No OS dependency
* Deterministic memory & runtime behavior
Communication and security isolated on a dedicated control MCU
* Application MCU treated as an untrusted sandbox domain from day one

That architectural decision - made before WebAssembly entered the conversation - gives
us a structural advantage now.

Now Extending to Become the WASM Delivery Standard

The WASM runtime and device I/O ABI work described in this paper is not an
independent experiment - it is the next logical stage of the same platform:

WebAssembly becomes a second artifact type delivered via the same OTA pipeline
* Hardware sandboxing remains (if needed), WebAssembly adds a software sandbox
Modules can be updated, revoked, and audited without reflashing firmware
+ The same lifecycle controls apply to both native firmware and WASM payloads

This positions RloT Secure uniquely in the market:
Our work is not about producing another WASM runtime - it is about making

WASM deployable at scale in IoT by embedding it into an existing lifecycle platform
that has already been proven in production on constrained devices.

Commercial and Strategic Implication
Because the lifecycle infrastructure, security model, and field deployment already exist:

+ The technology is de-risked - only the integration stage remains
+ The market timing is optimal - before WebAssembly standardization hardens
« The acquisition value is high - a ready-made platform into which WASM drops

The runtime makes us early. Our platform makes us credible. The convergence makes us
strategically valuable.

Conclusion

loT is entering a decade in which devices will not only need to run for long lifetimes - they
will need to run new logic, from new parties, under new security expectations, without
replacing firmware and without trusting vendors blindly. The existing model of vendor-

Page 16 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

locked firmware, opaque code bases, and per-hardware rebuilds is fundamentally
incompatible with that future.

WebAssembly provides the missing execution model - portable, sandboxed, and
language-agnostic - but by itself it is not ready for loT. Two gaps had to be closed before
WebAssembly could become the foundation of device computing: a runtime that fits
micro-controllers, and a portable device I/O layer that breaks hardware lock-in. We have
demonstrated both.

At the same time, RloT Secure is not entering this space from a standing start. Our
lifecycle management platform is already deployed, already trusted, and already
operating under the exact constraints and realities where WebAssembly will matter most.
Integrating WebAssembly as a first-class deployment format is not a speculative bet - it
is a leverage play on top of proven infrastructure.

loT devices are expected to operate for a decade or more, under untrusted conditions,
with evolving requirements - yet the industry still relies on static, vendor-specific firmware
models that cannot scale. WebAssembly introduces a portable, auditable, sandboxed
alternative that aligns with the future of loT - but only if implemented in a form suitable for
micro-controllers and standardized before fragmentation hardens.

The inflection point is now - before proprietary ABls become entrenched, before
toolchains diverge, before the standard is set by incumbents.

This white paper establishes three conclusions:

+ WebAssembly on micro-controllers is not theoretical - it works today.
Proven on real hardware, with real numbers, under real constraints.

* The opportunity window is now, before fragmentation becomes permanent.
Early standard alignment determines who becomes a reference point.

* RIloT Secure is positioned to lead, not follow, this transition.
With a deployed platform, a working runtime, and a published ABI, we are ahead of
the consolidation curve - not waiting for it.

The Call to Alighment
This is not a solitary proposition - but a collective inflection for the industry. We invite:

+ Module vendors & silicon providers - integrate before standards harden elsewhere
+ Platform operators & integrators - deploy WASM without rewriting toolchains

+ Investors & strategic buyers - participate before this layer consolidates

+ Standards collaborators - build on a concrete, working proposal, not abstractions

The future of loT will not be won by whoever ships the next board - but by whoever
defines what runs on them, safely, portably, and at scale. This is not about adding
another VM to loT - it is about deciding what will run on devices for the next decade and
who controls that layer.

Page 17 of 18

White Paper: The Next lIoT Cycle - WebAssembly at the Bottom of the Stack

References

https://riotsecure.se/

https://riotsecure.se/brawl

Blog Posts

For additional technical background, implementation details, and supporting analysis behind the
concepts presented in this whitepaper, see the following RlIoT Secure engineering blog posts:

https://riotsecure.se/blog/brawl_meets_webassembly_standardization_for_a_smarter_iot
https://riotsecure.se/blog/riot_secure_webassembly_on_arduino_uno_r4_wifi

https://riot re. log/wasi_current_state_and_roadm

https://riot re. log/wasm_binary_size_in_high_Level_lan
https://riotsecure.se/blog/wasm_zero_bloat demos_in_c_rust and_tinygo

https://riotsecure.se/blog/wasi_universal_device_io_abi

ﬁIOT Copyright © 2025, RloT Secure AB. All rights reserved.
E;E CURE This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is
The Next loT Cycle - not warranted to be error-free nor subject to any other warranties or
WebAssembly at the conditions, whether expressed orally or implie(?l_ in Iavy, including
Bottom of the Stack implied warranties and conditions of merchantability or fitness for a
particular purpose. We specifically disclaim any liability with respect to
August 2025 this document, anq no contractuallobligations are formed either directly
Author: Aaron Ardiri or indirectly by this document. This document may not be reproduced
’ or transmitted in any form or by any means, electronic or mechanical,

RloT Secure AB for any purpose, without our prior written permission.

www.riotsecure.se Page 18 of 18

https://riotsecure.se/
https://riotsecure.se/brawl
https://riotsecure.se/blog/brawl_meets_webassembly_standardization_for_a_smarter_iot
https://riotsecure.se/blog/riot_secure_webassembly_on_arduino_uno_r4_wifi
https://riotsecure.se/blog/wasi_current_state_and_roadmap
https://riotsecure.se/blog/wasm_binary_size_in_high_Level_languages
https://riotsecure.se/blog/wasm_zero_bloat_demos_in_c_rust_and_tinygo
https://riotsecure.se/blog/wasi_universal_device_io_abi

	The Next IoT Cycle WebAssembly at the Bottom of the Stack Standardizing Portable Secure Execution for Real-World IoT Using WebAssembly

